If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10u^2+5u-15=0
a = 10; b = 5; c = -15;
Δ = b2-4ac
Δ = 52-4·10·(-15)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*10}=\frac{-30}{20} =-1+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*10}=\frac{20}{20} =1 $
| 8+5x=9+-5x+5x | | (x/2)-3=9 | | 6x+9x-12=8x | | 6x+16.8=2x | | 12/2x+36/4x-12=24/3x | | 15=26-x | | 1/2x+3/4x-1=2/3x | | 2x-9+5x=7x-9 | | 5x+120=600 | | 2(x-3)+4(x+4)=0 | | 4x+1/7=15 | | 9=9x=-23+x | | x+96=600 | | 6x−17=25 | | x-120=480 | | 3x|8-2=x-3|4 | | -3s^2+3s-1=-91 | | (8^2-x)=(3x^2+4x)-(x^2+7x) | | 5(11-x)=10 | | 7x+13=37 | | 700+80+n=780 | | 0.25x2.6= | | 0.25x+0.32=27 | | (8x^2-x)=(3x^2+4x)=(x^2+7x) | | (8^2-x)=(3x^2+4x)=(x^2+7x) | | 4×(2x-1)+6×(x+3)=2(x+3)+4 | | Nx9/24=5/16 | | Nx9/24=5/*16 | | 3n-9=-7 | | (-6x^2-x+8)=(6x^2+3x-2) | | y/1.2=y+6/4.2 | | 6x^2-1/2x^2=11/2x^2 |